High Gradient Operations with 9mA Beam Loading analyzing FLASH data from Sept. 09 test Julien Branlard, Gustavo Cancelo, Brian Chase ### **Outline** - Simulation tool - Model - Validation (comparison with experimental data) - Review Sept. 2009 test - High beam data from DAQ - Tilts at high gradient - Avoid quenches by lowering gradients - Moving forward - Suggested studies - Further simulation work - What does this mean for ILC/XFEL? - How critical is LFD ? - What (motorized) knobs ? #### Simulation Model Standard RLC cavity model: Solving the RLC electrical model of a cavity \rightarrow 2nd order differential equation $$\ddot{\mathbf{V}}(t) + \frac{\omega_0}{Q_L}\dot{\mathbf{V}}(t) + \omega_0^2\mathbf{V}(t) = \frac{\omega_0 R_L}{Q_L}\dot{\mathbf{I}}(t)$$ 1st order solution to the equation above: $$\frac{\mathrm{d}}{\mathrm{d}t} \left(\begin{array}{c} V_r \\ V_i \end{array} \right) = \left(\begin{array}{cc} -\omega_{1/2} & -\Delta\omega \\ \Delta\omega & -\omega_{1/2} \end{array} \right) \cdot \left(\begin{array}{c} V_r \\ V_i \end{array} \right) \; + \; \left(\begin{array}{cc} R_L\omega_{1/2} & 0 \\ 0 & R_L\omega_{1/2} \end{array} \right) \cdot \left(\begin{array}{c} I_r \\ I_i \end{array} \right)$$ * "Vector Sum Control of Pulsed Accelerating Fields in Lorentz Force Detuned Superconducting Cavities", T. Schilcher PhD Thesis, 1998 #### Waveguide distribution for klystron #4 (status 06.08.07) | ACC4 | 21.8 | MV/m | | 181 | MeV | | Max | 191 | Mev | Δ | 10 | | | |---------------------------|------------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|-----------|--------------|----------| | 5 | | | | 017 | | | | | 0.0 | 10.4.10.0 | 00 | _ A | CC4 | | Pin, MW | 1.51 | | RF power | OK | | | S | etup t | rom 08 | /24/20 | 09 | cavities | | | | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | | | | _ h | 21/0 | | Qext
A dB | 3.0
9.5 | | 3.0
9.5 | 3.0 | 3.0
9.5 | 3.0 | 3.0
9.5 | 3.0
9.5 | | | | _ n | ave | | A, dB
A (klystron) | 9.5
15.1 | 9.5
15.1 | 15.1 | 9.5
15.1 | 9.5
15.1 | 9.5
15.1 | 9.5
15.1 | 9.5
15.1 | not measured | | | mot | orized | | A (kiysiioii)
⊇cav, kW | 169.7 | | | 169.7 | 169.7 | 169.7 | 169.7 | 169.7 | | 1357.9 | 155 | 3-stub | | | Ecav, Kvv
Ecav, MV/m | 21.85 | | | 21.85 | 21.85 | 21.85 | 21.85 | 21.85 | | | MV/m | 3- | stub | | l match | 7.30 | | 7.30 | 7.30 | | 7.30 | 7.30 | | | 21.0 | 101 07111 | | | | | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | | 23.0 | | | | | Ecav, max | Cav 1 | Cav 2 | Cav 3 | Cav 4 | Cav 5 | Cav 6 | 23
Cav 7 | Cav 8 | | 23.0 | | | | |
Δφ | not measure | | Cara | Ca1 4 | Caro | Caro | Cav / | Caro | | beam - forv | vard RF | | | | ΔΨ | noi measare | | | | | | | | | Deam - TOTY | varu / \/ | | | | ACC5 | 22.6 MV/m | | 187 | | MeV | | Max | 231 | Mev | Δ | 44 | | | | Di- NADA (| 4.04 | | DE | OL | | | | | | | | ACC5 | cavities | | Pin, MW | 1.61 | | RF power | OK | | | | | | | | h | ave | | Qext | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | | | | | | A, dB | 9.67 | 9.64 | 9.61 | 9.53 | 9.34 | 9.35 | 9.38 | 9.39 | measured | | | moto | rized 3 | | A (klystron) | 14.87 | 14.84 | 14.81 | 14.73 | 14.54 | 14.55 | 14.58 | 14.59 | | | | stub | tuners | | Pcav, kW | 173.5 | | 175.9 | 179.2 | | 186.8 | 185.5 | 185.1 | | 1447.8 | 160 | | | | Ecav, MV/m | 22.09 | 22.17 | 22.24 | 22.45 | 22.95 | 22.92 | 22.84 | 22.81 | | | MV/m | | | | l match | 7.38 | 7.40 | 7.43 | 7.50 | 7.66 | 7.65 | 7.63 | 7.62 | | | | | | | Ecav, max | 29 | 27 | 28 | 28 | 29 | 28 | 28 | 26 | | 27.9 | | | | | | Cav 1 | Cav 2 | Cav 3 | Cav 4 | Cav 5 | Cav 6 | Cav 7 | Cav 8 | | | | | | | Δφ | 0 | -6 | 11 | 1 | 15 | 6 | 6 | 20 | | beam - forv | vard RF | | | | | | | | | | | | | | | | | | | ACC6 | 26.5 MV/m | | | 220 | MeV | | Max | 238 | Mev | Δ | 18 | ACC6 cavitie | | | Pin, MW | 2.18 | | RF power | OK | | | | | | | | h | ave | | -111, 1919 9 | 2.10 | | Ki powei | ON | | | | | | | | | | | Qext | 2.95 | 2.97 | 3.00 | 2.98 | 3.00 | 2.98 | 2.99 | 2.98 | 11/21/2007 | | | mot | orized | | 4, dB | 7.85 | | | 8.31 | | | 10.28 | | | | | coup | lers and | | A, (klystron) | 11.65 | | | 12.11 | 16.07 | 15.83 | 14.08 | 14.17 | | | | | | | Pcav, kW | 357.6 | | | 321.6 | | 136.6 | 204.3 | | | 2066.5 | 113 | pnase | shifte | | Ecav, MV/m | 31.82 | | | 30.12 | | 19.62 | 23.99 | 23.76 | | | MV/m | | | | match | 10.81 | + | 10.22 | 10.13 | 6.37 | 6.60 | 8.04 | 7.99 | | | | 8.91 | | | Ecav, max | 34 | | | 32 | | 21 | 29 | 26 | | 28.6 | | | 5 | | | Cav 1 | Cav 2 | Cav 3 | Cav 4 | Cav 5 | Cav 6 | Cav 7 | Cav 8 | | | | | | | Δφ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | beam - forv | vard RF | | | FLASH data from Aug. 27th 2009, 2:20 am ### Review of Sept. 09 studies (beam loading on high gradient cavities) - Validated simulator (without beam) - Tuned to match FLASH ACC4, ACC5, and ACC6, according to setup from 08/24/2009 (Q_I's, P_K's) - Verified cavity gradients against experimental data - Simulator predicts cavity quench for 9mA current for high gradient cavities - During Sept. test, gradient was lowered to prevent quenching - Based on simulations, a solution is proposed to operate at higher gradient while preventing high gradient cavities to quench - Redistributing power among ACC4 and ACC56 (hybrid) - Adjusting QL for cavities 1-4 in ACC6 (not flat with zero beam) - The adjustments were tested without beam (Aug. 26 remote study) but not with beam With Aug. 24th 2009 FLASH settings With Aug. 24th 2009 FLASH settings FLASH data from Sept. 21st 2009, 2:50 am FLASH data from Sept. 21st 2009, 2:50 am ### **Proposed Studies** ### Moving forward - Proposed studies - Rerun analysis with new RF distribution configuration for ACC4, 5, 6 and 7 - Machine Test - Study impact of cavity detuning - Roll over in gradient at the end of pulse - Questions - $-20 \text{ MV/m} \rightarrow 31.5 \text{ MV/m}$ - How critical is LFD ? - What automatic knobs do we really need? # Thank you! ## Backup slides ### 1^{st} approach: individual Q_L , individual P_K (optimized for max beam) $$\frac{V}{V_0} = \frac{Q_L}{Q_{L0}} \left(2^{\frac{Q_{L0}}{Q_L}} - 1 \right)$$ $$\frac{P_k}{P_{k0}} = \frac{Q_L}{Q_{L0}} 4^{\left(\frac{Q_{L0}}{Q_L} - 1\right)}$$ Optimized for flat individual gradient under maximum beam current REFERENCE: "RF distribution optimization in the main linac of the ILC" K.Bane, C.Adolphsen, C.Nantista (PAC07) # 2^{nd} approach: same Q_L individual P_K (optimized for no beam) Same Q_i for all cavities ($Q_i = 3 \times 10^6$) ACC6: [30.48 31.59 29.41 28.91 18.32 18.84 23.04 22.80] MV/m lbo = 5 mA. beam pulse = 0.65 ms Adjust power to set cavities at maximum gradient without beam REFERENCE: "XFEL waveguide distribution and more", V. Katalev, XFEL HLRF kick off meeting, 2007 ### "Optimized": same Q_L , individual P_K (optimized for any beam current) REFERENCE: "Operational Solution to Obtaining a Flat Vector Sum from Multiple Cavities with Gradient Disparities", J. Branlard, B. Chase, FNAL ILC DB doc # 4890 ### **Problem Statement** 3 knobs: - LLRF - cavity coupler - waveguide power coupler #### Example 1: FLASH 9mA test at DESY "no-beam" study - 8/27/2009 Simulator mimics power distribution & coupling for ACC4, 5 and 6 Verification of simulated cavity gradients vs. experimental data without beam Using simulator, predict behavior with 9 mA beam current Using simulator, propose tuning scheme to avoid quench of "high-gradient" cavities Implement scheme and verify cavity tilts cavities with adjusted tilt up without beam → flat with beam₂₁ #### Example 1: FLASH 9mA test at DESY "high beam" study - 9/21/2009 Verification of model against experimental data with 9mA beam Could not implement optimized scheme with beam → lowered klystron power for safe operation Validate simulator as useful tool for next test